3.3.87 \(\int \sqrt {\frac {a+b x^3}{x^2}} \, dx\)

Optimal. Leaf size=51 \[ \frac {2}{3} x \sqrt {\frac {a}{x^2}+b x}-\frac {2}{3} \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a}}{x \sqrt {\frac {a}{x^2}+b x}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {1979, 2007, 2029, 206} \begin {gather*} \frac {2}{3} x \sqrt {\frac {a}{x^2}+b x}-\frac {2}{3} \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a}}{x \sqrt {\frac {a}{x^2}+b x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[(a + b*x^3)/x^2],x]

[Out]

(2*x*Sqrt[a/x^2 + b*x])/3 - (2*Sqrt[a]*ArcTanh[Sqrt[a]/(x*Sqrt[a/x^2 + b*x])])/3

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1979

Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && GeneralizedBinomialQ[u, x] &&  !Gene
ralizedBinomialMatchQ[u, x]

Rule 2007

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(x*(a*x^j + b*x^n)^p)/(p*(n - j)), x] + Dist
[a, Int[x^j*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, j, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[
Simplify[j*p + 1], 0]

Rule 2029

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rubi steps

\begin {align*} \int \sqrt {\frac {a+b x^3}{x^2}} \, dx &=\int \sqrt {\frac {a}{x^2}+b x} \, dx\\ &=\frac {2}{3} x \sqrt {\frac {a}{x^2}+b x}+a \int \frac {1}{x^2 \sqrt {\frac {a}{x^2}+b x}} \, dx\\ &=\frac {2}{3} x \sqrt {\frac {a}{x^2}+b x}-\frac {1}{3} (2 a) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {1}{x \sqrt {\frac {a}{x^2}+b x}}\right )\\ &=\frac {2}{3} x \sqrt {\frac {a}{x^2}+b x}-\frac {2}{3} \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a}}{x \sqrt {\frac {a}{x^2}+b x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 66, normalized size = 1.29 \begin {gather*} \frac {2 x \sqrt {\frac {a}{x^2}+b x} \left (\sqrt {a+b x^3}-\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )\right )}{3 \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(a + b*x^3)/x^2],x]

[Out]

(2*x*Sqrt[a/x^2 + b*x]*(Sqrt[a + b*x^3] - Sqrt[a]*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]]))/(3*Sqrt[a + b*x^3])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 4.03, size = 69, normalized size = 1.35 \begin {gather*} \frac {x \sqrt {\frac {a}{x^2}+b x} \left (\frac {2}{3} \sqrt {a+b x^3}-\frac {2}{3} \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )\right )}{\sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[(a + b*x^3)/x^2],x]

[Out]

(x*Sqrt[a/x^2 + b*x]*((2*Sqrt[a + b*x^3])/3 - (2*Sqrt[a]*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/3))/Sqrt[a + b*x^3]

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 104, normalized size = 2.04 \begin {gather*} \left [\frac {2}{3} \, x \sqrt {\frac {b x^{3} + a}{x^{2}}} + \frac {1}{3} \, \sqrt {a} \log \left (\frac {b x^{3} - 2 \, \sqrt {a} x \sqrt {\frac {b x^{3} + a}{x^{2}}} + 2 \, a}{x^{3}}\right ), \frac {2}{3} \, x \sqrt {\frac {b x^{3} + a}{x^{2}}} + \frac {2}{3} \, \sqrt {-a} \arctan \left (\frac {\sqrt {-a} x \sqrt {\frac {b x^{3} + a}{x^{2}}}}{a}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^3+a)/x^2)^(1/2),x, algorithm="fricas")

[Out]

[2/3*x*sqrt((b*x^3 + a)/x^2) + 1/3*sqrt(a)*log((b*x^3 - 2*sqrt(a)*x*sqrt((b*x^3 + a)/x^2) + 2*a)/x^3), 2/3*x*s
qrt((b*x^3 + a)/x^2) + 2/3*sqrt(-a)*arctan(sqrt(-a)*x*sqrt((b*x^3 + a)/x^2)/a)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 71, normalized size = 1.39 \begin {gather*} \frac {2 \, a \arctan \left (\frac {\sqrt {b x^{3} + a}}{\sqrt {-a}}\right ) \mathrm {sgn}\relax (x)}{3 \, \sqrt {-a}} + \frac {2}{3} \, \sqrt {b x^{3} + a} \mathrm {sgn}\relax (x) - \frac {2 \, {\left (a \arctan \left (\frac {\sqrt {a}}{\sqrt {-a}}\right ) + \sqrt {-a} \sqrt {a}\right )} \mathrm {sgn}\relax (x)}{3 \, \sqrt {-a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^3+a)/x^2)^(1/2),x, algorithm="giac")

[Out]

2/3*a*arctan(sqrt(b*x^3 + a)/sqrt(-a))*sgn(x)/sqrt(-a) + 2/3*sqrt(b*x^3 + a)*sgn(x) - 2/3*(a*arctan(sqrt(a)/sq
rt(-a)) + sqrt(-a)*sqrt(a))*sgn(x)/sqrt(-a)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 55, normalized size = 1.08 \begin {gather*} \frac {2 \sqrt {\frac {b \,x^{3}+a}{x^{2}}}\, \left (-\sqrt {a}\, \arctanh \left (\frac {\sqrt {b \,x^{3}+a}}{\sqrt {a}}\right )+\sqrt {b \,x^{3}+a}\right ) x}{3 \sqrt {b \,x^{3}+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^3+a)/x^2)^(1/2),x)

[Out]

2/3*((b*x^3+a)/x^2)^(1/2)*x*(-arctanh((b*x^3+a)^(1/2)/a^(1/2))*a^(1/2)+(b*x^3+a)^(1/2))/(b*x^3+a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {\frac {b x^{3} + a}{x^{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^3+a)/x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((b*x^3 + a)/x^2), x)

________________________________________________________________________________________

mupad [B]  time = 5.34, size = 63, normalized size = 1.24 \begin {gather*} \frac {2\,x\,\sqrt {b\,x+\frac {a}{x^2}}}{3}+\frac {\sqrt {a}\,\mathrm {asin}\left (\frac {\sqrt {a}\,1{}\mathrm {i}}{\sqrt {b}\,x^{3/2}}\right )\,\sqrt {b\,x+\frac {a}{x^2}}\,2{}\mathrm {i}}{3\,\sqrt {b}\,\sqrt {x}\,\sqrt {\frac {a}{b\,x^3}+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^3)/x^2)^(1/2),x)

[Out]

(2*x*(b*x + a/x^2)^(1/2))/3 + (a^(1/2)*asin((a^(1/2)*1i)/(b^(1/2)*x^(3/2)))*(b*x + a/x^2)^(1/2)*2i)/(3*b^(1/2)
*x^(1/2)*(a/(b*x^3) + 1)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x**3+a)/x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________